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A simple numerical scheme is proposed to solve the problem of dctcrmining the intcrfacc 
shape under the thermal equilibrium condition. The procedure is based on a finite difference 
method using boundary-fitted coordinate systems. Several examples are given ‘This simple 
numerical solution method can be easily applied to any arbitrary shape and the unsteady 
solidification problem. 1 : IYYI Acadenx Press. Inc. 

Many numerical solution methods have been developed in recent years to solve 
heat conduction equations with arbitrary shapes Cl]. Knowledge of the solid-liquid 
interface, especially the control of the interface shape by the experimental 
parameters, is very important in determining the quality of the crystals [2]. 

Nash and Glicksman [3] calculated the solid-liquid interface in periodic grain 
boundaries by an integral method, taking both the steady-state heat conduction 
equation and the thermodynamic equation into account. But their method is com- 
plicated and limited to the boundary conditions. Other investigators have applied 
the numerical solution to the solidification problem [4, 51. For example, under the 
condition that the interface shape was specified as parabolic [S], Navier-Stokes 
equations were solved numerically. However, the solid-liquid interface shape is not 
always parabolic in practice [6]. 

Though the analytical solutions are mainly for the one-dimensional cases of 
infinite or semi-infinite regions with simple boundary conditions [7], their solution 
methods have restrictions on their application. 

This paper discusses the simple solution method of calculating the solid-liquid 
interface shape which satisfies both the steady state heat conduction and the 
thermodynamic equations. The discretization by the finite difference method is 
conducted in this method so as to ensure the second-order accuracy. 

The use of the boundary-fitted coordinate system in this procedure is a very 
important element. This is because the boundary-fitted coordinate system easily 
enables us to calculate the grid points if the coordinates of the boundaries are given. 
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Moreover, we use the B-spline function to represent the solid-liquid interface line 
and evaluate the derivatives at the interface. 

To following section decribes the governing equations and the boundary condi- 
tions which are transformed to a general curvilinear coordinate. A simple numerical 
solution procedure is proposed. 

GOVERNING EQUATIONS 

The schematic diagram of the model solved in this paper is shown in Fig. 1. Tb 
and T, are the temperature at the wall of the bottom and the top, m,, mL, and mB 
are the temperature slope at the wall below the interface, above the interface, and 
at the wall of the bottom, respectively. For the temperature slope of the wall to be 
continuous at the interface, we use the interpolation by the quadratic curve. 

As the growth process is governed by complex interactions between the velocity, 
temperature, and impurity concentration [S, 91, we simplify the governing equa- 
tions by considering only the temperature field in the absence of buoyant convec- 
tion fow and the segregation of impurities. Naturally the application is limited. 
However, we expect the basic understanding of the solidification process obtained 
to be useful in the case of considering the buoyant convection or the impurity 
concentration. 

The growth rate in our paper is taken as zero because the Gibbs-Thompson rela- 
tion [lo] which is introduced in Eq. (3) is obtained from the thermal equilibrium 
condition. 

I’ 0 s I ‘I I 0 ,v 

FIG. 1. Schematic representation of the solid-liquid interface 
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Hence, the steady state heat conduction equation and the boundary condition at 
the interface can be written as 

V=T= 0, (1) 

tiLn.VTI,=lc,n.VTIs, (2) 

where T[K] is temperature, K~ [W/cm K] is thermal conductivity in liquid, K~ is 
that in solid, and n is the normal unit vector on the interface. 

The Gibbs-Thompson relation provides the differential equation for the solid- 
liquid interface shape [lo]. This equation can be written as 

Te = T, I1 -ill, (3) 

y = - ( 1 +f’y/f”, (4) 

Te6 T,,,, (5) 

where T, [K] is the equilibrium temperature at the interface, T, [K] is the melting 
temperature, y[dyn/cm] is the surface energy, L[J/g] is the latent heat of fusion, 
r[cm] is the curvature radius, f’ is the first derivative on x of the interface line 
f(x), and f” is the second derivative. 

Equation (5) shows that only the supercooling is considered here. Therefore from 
Eqs. (3) and (5) we find the curvature to be positive. 

Accordingly, the numerical solution of the solid-liquid interface should satisfy 
both Eqs. (1) and (3), as well as the Dirichlet boundary conditions on the walls. 

Consider the boundary-fitted coordinate system [ 11, 121, 

x = dir, v), .I’ = J’(k YL (6) 

FIG. 2. A map of region at transformation. 
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defined as the solution of the quasi-elliptic equations, 

gllx55 - k12-Q1 + g22x7ja + J2(& + Qx,) = 0, 

g1 I Y<i - &I, Y,, + g22 Yqv + J2(PYc + QY,) = 0, 
(7) 

where 

2 ’ g,,=x ?/+y-<, g,,=x~-~,+Y<Y,, 

g,, = x2t + y2<, 
(8) 

J=x, y,-x, y,. 

PK, rl) and QK II) are functions of the control of spacing of the coordinate lines. 
The sketch in Fig. 2 illustrates the map transforming the physical plane (x, y) 

into a rectangular computational plane (5, q) with uniform grids. Equation (7) is 
solved by the SOR method [ 133. A transformation example is shown in Fig. 3. The 
choice of the functions P and Q is in accordance with Ref. [13], 

P=- i ~isgn(5-5,)eXP(-Cil5-5il), 

i= I 

Q = -ig, q w(v -r,) exp( -ci IY - vi1 1, 

(9) 

where y1 and m are the number of < and ‘1 lines, a, and bj being constant. These 
equations have the effect of attracting the r = constant lines to the 4 = li lines, and 
attracting v] = constant lines to the q = qj lines. 

FIG. 3. Example of transformation. P=O, a,=O.l, and h,=0.2 in Q when the 
j is 11: (a) transformed plane with uniform grids; (b) physical plane. 

attraction line index 
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Equations (1) and (2) are now transformed to the computational plane [ 111, 

g,, Tri--2g,J-g,,+gJ-~rl+ J2W,+QT,)=0, (10) 

KL 
Wf’y, + xq) - T, (f’~< + xy) 

J( 1 ~f’~)“~ L 

= KS 
T; (f’y, + xq I- TV (f’yr + xc) 

J( 1 +fr2)‘j2 S 
(11) 

B-SPLINE FUNCTION AND THE FITTING OF THE INTERFACE 

Close attention should be paid to determining the derivatives f’ and f' in 
Eqs. (4) and (11); otherwise large numerical errors will be caused by the 
approximation errors of the derivatives. For example, f' is approximated by the use 
of the center difference formula, 

.f’=(.f,+l.,-f,m #+Wx2). (12) 

The B-spline [14, 151 is superior to the above approximation because its slope 
and curvature are continuous at the junction points. However, if the Neumann or 
the periodical condition is given as the end condition, the cubic spline may be 
applied to the approximation of the interface line [ 16, 171. Consider an interface 
that is represented by an ordered sequence of interface points, 

(x0, 4x0)), (x,, r(xI)), . . . . (x,~, ybN)); 

that is, a single value in x and r(xj) is the curvature radius at xi. We present a 
method to locate the interface line f(x), expanding f’(x) by the truncated power 
function Mmj [14, 151, 

??+!?I 
.f’(x) = c CjMmj(-~), (13) 

,=I 

where 

and 

(y-x)“-‘, 
Mh;Y)=(Y-xx)“,-’ o L 

Y>X 
y < x. 

(14) 

(15) 
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One finds from the definition of M, that 

M ~(x)=(x-~j-t-~Mr-l jtx) 
v 

5,-tj-r ' 
Y = 2, 3, . . . . m; 

Thus the knot values 5; should be taken as 

xl<~i+I<x,+I~ i = 0, 1, . ..) n - 1, 

N+l=n+m. 

(16) 

(17) 

(18) 

where N+ 1 is the number of sample points. 
The derivatives of M, are obtained from Eqs. (16) and (17), 

M;i(x)=O, (19) 

Mij={“r-l ,~I(X)-M,~l.j(X)+(X--j~,)M:~l 1 l(X) 

+ (5,-x) ML-L j(x)3/(5j-4,-r). (20) 

The curvature radius can be written from Eqs. (4) and (13), 

f-(x,)= - [I+ cc:=“;” GM,,A~,))213’2~ 
xy=‘;” C,MX, (Xi) (21) 

Rewriting Eq. (21) and following Newton’s method, we have a form of 
calculating Ci, 

llfm ijFk, 

Fkj+ C ;AC;=O, 
i=1 ac, 

Ckj= Ckj+ ACki, 
II + I?, 

E= c lW:I, 
/=l 

where k is the iteration cycle and 

(22) 

(23) 

(24) 

Fkj = r(xI) + 
[l + (Cyz;” CjM,i(Xj))2]3’2, 

x:2;” Cj”ki(xj) 
(25) 

We can easily obtain the solution of Eq. (22), Ck,, by Gauss’s elimination 
method. The iteration is continued until E = CT=+;1 lACki < E. 

581'94/1-IO 
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We have the integral form of Eq. (13) 

.f(x,+ I ) -.f(x,) = Ii’+’ c CjM,,,(X) dx. (26) 
XI 

The right-hand term is calculated using the values of C,, so we can obtain the value 
of f(x) at xj from Eq. (26) if the value of f(x) at the end, x,, or x,,,, is given. 

DISCRETIZATION AND NUMERICAL SOLUTION 

The numerical algorithm for the solidification problem is formulated below. 
Equation (10) is approximated on the computational plane by the second-order 
central finite difference formulae and can be rewritten for the nth sweep, 

T;f1=T;j+u12(g,,+g22)T:1,-g,,(T:+,.j+T:+,’,,) 

-gdT:f,+ 1 +T;I.1,)+g12(T:(+,,j+,-T:=,‘,,~, 

- T::‘p, j+, + T:“:,l.j ,)/2-J2{P(T;+,,i- T;f;,J 

-~(T~j+~-‘~~.~!,)}I/~‘(x,,+R22)}~ (27) 

where w is an acceleration parameter. As well known, the value of w is very 
sensitive to the convergence rate, typically w = 1.7. 

Equation (11) is approximated by the finite difference method, 

where 

R= K~J~/K~J~. 

Substituting the second-order difference equation below into Eq. (11) yields 
Eq. (281, 

T,lL=(-T,,i+2+4Ti,,+,-3Ti,j)/2 

and 

T,Is=(T,,j-2-4T,,I-I +3Tj.,)/2. 

Equation (27) can be solved by the use of the usual SOR. 

(29) 

(30) 
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The interface line ,f(x,) is determined by the following procedure: 

(1) An unknown interface line and the unknown curvature radius are 
assumed to be fk,,h = f ‘(x,) and rk,(xi), where k is the iteration number. 

(2) The physical plane (x, v) is transformed to the computational plane 
(& q). Equation (7) can be solved by the usual SOR method. 

(3) Equations (27) and (28) give the temperature distribution under the 
assumption of procedure (1). The convergence condition is defined as 

C IT'+'i,,- Tli./I <El> (31) 
i, / 

typically E 1 = 1 .OE-O4. 
(4) The equilibrium temperature at the interface T, is calculated from Eq. (3). 

Using the interface temperature T,,, determined from procedure (3) we obtain the 
new radius rk + Ii, 

rk + li = rki + c(ri - rkj), (32) 

where 
Y 

“=L[l -(T,+ T,,,)/2/T,,,]’ 
(33) 

and 0 <c < 1. Equation (33) is obtained from Eq. (3) by the replacement of T, by 
(T,,, + T.J/2. We find C, and the new interface fk+'i,h from Eqs. (21)-(26). 

(5) The thermal equilibrium interface line is determined from T, and the tem- 
perature distribution calculated in procedure (3). The interface line obtained is 
taken as f"' li.(. 

(6) A parameter E characterizing the convergence can be defined: 

E=x Ifk+l;,,>-.fk+';,,~. (34) 

The iteration procedure is continued until the convergence criterion 

E<Q, 

is satisfied, typically s2 = l.OE-O.4. 

(35) 

SAMPLE APPLICATIONS 

The simple numerical solution of this study can be applied to cases in the absence 
of free flow and solute segregation. Two examples are calculated, using personal 
computer PC-98XA. The interface shape is represented by the B-spline function 
with m=5 and N+ 1 =21. 
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r---- 

FIG. 4. Convergence process of the calculated interface: dashed curve-interface determined by the 
Gibbs-Thompson relation; full curve-interface determined by the steady-state heat conduction. 

The convergence process of the assumed interface and the calculated interface 
is displayed in Fig. 4. In Fig. 4(c), the solid-liquid interface satisfies both 
requirements, i.e., the energy conservation and the thermodynamics. 

The example in Fig. 5 shows that: (a) when KSmS < KLmL, the interface shape is 
concave toward the liquid; (b) when KSmS= rcLmL, it is flat; and (c) when . . 
KSmS > KLmL, it is convex. 

The interface temperature in this case is nearly equal to the melting temperature, 
so we apply the B-spline to f(x) but not Y(X) and use the iteration procedure, 
.fk+li,h = fki,, + c(f”+ -f”;,,) instead of Eq. (32). The values of the parameters used 
for calculating are shown in Table I [ 183. As only the ratio of thermal conductivity 
in the liquid and that in the solid is necessary for the calculation, no value of 
thermal conductivity is listed. 

(a) (b) Cc) 

FIG. 5. Illustration of the isotherms and the solid-liquid interface (thick curve) for three types of 
~,rn; AT= l.OK: (a) tiLm,/~,m,=4.0; (b) K~wI~/K~M~= 1.0; (c) ~~m~/rc~rn~=O.25. 
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TABLE I 

Values of Parameters Used in Calculations 

Parameter 
~L1h.S mL Wcml wk [K/cm] MB [K/cm] Wcml Wcml 

Figure 

5.(a) 2 2 1 0 5 10 
(b) 0.5 2 1 0 5 10 
(c) 0.5 1 2 0 5 IO 

6 4 1 1 8 1 10 

8.(a) 2 20 40 0 8 x 10m3 lo-* 
(b) 1 20 20 0 8 x 10-j 10-* 
(cl 0.5 40 20 0 8 x 10-j 10-* 

No/e. Heat of fusion, L[J/g] = 726; surface tension, ;I[dyn/cm] = 700; melting temperature 
T,,, [K] = 1511. 

FIG. 6. Illustration of the isotherms and the solid-liquid interface isotherms and the solid-liquid interface (thick curve); AT= l.OK. 

AT AT 

LIQUID LIQUID 
-- -- 
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10 2 .1 

N 

FIG. 7. Convergence history for two values of C: E: error norm; N: iteration cycles 

This criterion for the interface shape is physically justified in view of the thermal 
transport at the interface and is probably useful in practice. The detailed results will 
be reported elsewhere. The numerical procedure to determine the isothermal 
contours follows Thompson’s method [ 131. 

The example illustrated in Fig. 6 shows that the interface shape is not parabolic 
but like a letter “u”’ because of the bottom gradient mB. We apply the B-spline to 
.f(x) but not to Y(X) because the interface temperature is nearly equal to the melting 
temperature. This calculated interface shape is qualitatively in agreement with the 
reported experiment [6]. The values of the parameters used for calculation are 
shown in Table 1. 

Calculation time is about 6630 min. It is found that calculation time depends not 
on the transformation from the physical plane to the transformed plane but on the 
number of grid points. The two examples in this paper have 20 x 20 grid points in 
one region. The relationship between the convergence rate and C in Eq. (32) is 
shown in Fig. 7. It is found that the SOR is an effective and stable method of 
solving Eqs. (1 ), (2) and (3). 

According to Nash and Glickman’s model [3], we calculate the interface shape 
shown in Fig. 8 with the grain boundary present. The boundary conditions are: (1) 
f’(x) = l/tan($/2) at x0; (2) f’(x) = 0 at xN, where $ is the contact angle between 
the two crystals. We solve Eq. (32) and the above boundary conditions 
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(n) ( II ) cc 1 

FIG. 8. Illustration of the isotherms and the solid-liquid interface showing the Gibbs-Thompson 

effect; AT= O.O2K, I,$ = 80 ‘: (a) ~~/tis = 2; (b) liL/tis = 1; (c) x,,j~s = 0.5. 

simultaneously to obtain Ci. The values of the parameters used are shown in 
Table I. The interface line is unequal to the melting temperature isotherm because 
of the Gibbs-Thompson effect. We assume the slight fluctuations of the isotherms 
in Fig. 8 are caused by the calculation errors. The accuracy of calculation would be 
improved by the increase of grid points. 

In solving the steady solidification problem with the iterative procedure, it is very 
convenient that the grid points at the new step are automatically generated simply 
by lving Eq. (7). Undoubtedly it foes without saying that the initial guess must be 
within a certain neighborhood of the solution in Eq. (7), if the iterative solution is 
to converge. This is because Eq. (7) is nonlinear. Following Ref. [ 131, the weighted 
average of four boundary points is chosen as the method of making the initial 
guess. The simple numerical scheme presented here enables us to easily obtain the 
solid-liquid interface which satisfies both the heat conduction and thermodynamics. 
Problems with arbitrary shapes can also be solved. The solutions will be very useful 
in understanding crystal growth in a Bridgman method. With some minor modifica- 
tions, the present scheme can be applied to the unsteady solidification problem. 
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